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Evolution and formation of dispersive-dissipative patterns
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A variety of interfacial phenomena, including non-Boussinesq and Marangoni effects are described by a
dispersive-dissipative modal + auug+ Bugge+[(1+2U)Ug] 4 YUy, =0. A critical surfacea= a.(B8,7) is
found such that for<a(8,v) the amplitude becomes unbounded within a finite time and the model breaks
down. Fora>«ay(B,v), if the initial perturbation is not too large, bounded patterns emerge. The interaction
between dispersion and advection dislocates the critical suffagerably when dispersion and convection
cooperatg and suppresses the temporally irregular nature of the resulting patterns. In the first of the two
regularized variants of the model considered, the amplitude runaway is mitigated and a formation of cusps is
observed. In the second variant with a quadratic dispersion, the emerging solutions are bounded save for a strip
in a parameter space, where both the amplitude and the gradients were found to grow at competing rates.
[S1063-651X97)51202-5

PACS numbdss): 47.20.Ky, 47.35+i

The amazing success of mathematical models to descrilte induce, oblivious of their desirability, all scales. Conse-
the physical reality tends to obliterate their approximate naguently the large amplitude and/or large gradient behavior of
ture, and thus the tentative nature of the information gatherethese models has little to do with their original counterparts.
via the analysis of these models. When nonlinearity is conThe ultraviolet falsetto may be a harmless annoyance; how-
cerned, the conventional derivation based on asymptotic o€Ver, at other times an artificial catastrophy in amplitude or
dering may not suffice to render a well-balanced model. Ungradient results. Another aspect of the ultraviolet mismatch
like a linear theory, where a direct relation between causéS the occasional elimination by the conventional expansion
and effect can be estimatmpriori’ in nonlinear theory a of a natural critical threShO(d), such as the onset of l’upture
seemingly minor constituent may cascade the dynamics int8f the interface or an overturn of waves, yielding instead an
a catastrophy. There are many examples in the recent sciefverly calm model equationfsuch as the Korteweg—de
tific literature where a seemingly slight generalization of aVries (KdV) or the Kuramoto-SivashinskiKS) equatior}.
model renders far worse results to the point of ill-posednesd\either the KS nor the KdV contain any information regard-
The generic model presented in this Communication delnd @ critical onset. In fact, these models always predict
scribes a formation of patterns due to an interaction betweefmooth patterns. To unfold such an onset one has to find and
advective, dispersive, and dissipative forces. In this modelestore the relevant mechani@ndispensed with in a con-
the competition between long-wave destabilizing and shortventional expansion. _ _
wave stabilizing forces runs out of balance in a certain pa- Returning to our model equation we write
rameter domain, causing an amplitude runaway within a fi-
nite time and a collapse of the model. We delineate the 2 _
domair(s) of well-posedness of this model as a physico- ft @l blooct Choct AT )0t ofow=0, - (1)
mathematical entity, and then proceed to present both math-
ematical and physical strategies for its regularization to renwherea,b,c,d,o are constants and<Ox<L. The model is a
der a well-balanced model. In particular, we shall show thanatural extension, appended with dispersion, of the KS
when the model equation describes the evolution of an internodel, but also with the destabilizing backward diffusion
face separating two liquids in a horizontal cylinder, the regu-being quadratic. This extension has a dramatic impact on the
larization enables us to follow the evolution of the interfaceresulting dynamics, because unlike the KS, the quadratic in-
toward rupture and a formation of drops. stability may overcome the short-wavelength stabilization

A poor description of the ultraviolet regime by most mac- causing an amplitude runaway, unless stabilized by other
roscopic models is a direct consequence of the way thesmechanisms. As to the physical origins of this model, we
models are derived, namely, under the assumption of bothote the Benard-Marangoni convection in a shallow layer
small amplitudes and small gradients. Though the derivatiowvith the free deformable boundary heated from the air side
is consistent with the intention that these models be usefll,2] and the Eckhaus instability of wav3]. The solidifi-
within these confines, it is the nature of nonlinear processesation of dilute binary alloy$4] has also been found to be

described by an equation similar to Ed) with a=b=0 or
with a=0b+# 0. A model of bioconvection and the effect of

*On leave at Department of Applied Mathematics and Engineerfluid’s compressibility also lead to a similar equatify.
ing Sciences, Northwestern University, Evanston, IL 60208. Whena=b=0 any initial perturbation either evolves into a
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150.0 : ‘ wavelength-energy dissipation via thei.. part. The in-
crease in the advection coefficieatenhances this process
? and lowers the saturation amplitude. A similar effect was
noted for the Benney equatid8].

It is important to stress that the emerging patterns in the
stable domain emerged out of small initial perturbations.
Nevertheless, certain large initial perturbations were found to
; run away, which implies that even the stable patterns may be
5. destroyed if strongly perturbed. We do not know yet how to

characterize these perturbations apart from clear evidence
that their measure is not in the maximum norm.

To understand the dispersive-advective interaction take
u~expkét+ior) (k and w being the wave number and the
wave frequency, respectively Then for the linearized
=8 U,+ BUg=0 equationw= Bk3. Thus, the phase velocity is

positive (negative for 8>0(<0) and the corresponding
wave propagates to the leftight) in &. In the nonlinear

FIG. 1. Data points for the critical surface= a¢(3, v) for three  problem this phase shift is coupled to the nonlinear advec-
values ofg: & —8=—-0.10—-8=0;0—-8=0.1. All y>1 states tion, which causes both deformation and a displacement of
are linearly stable. Whem> a(8,7), the solutions of Eq(2) the wave. We can formally write this interaction in a mixed
evolving from small-amplitude initial data are bounded, while for notation as fu— Bk?)u, . In a bounded domain its size sets
a<ac(B,v) they runaway. The solid=28y"* curve represents a lower bound ork and thus enhancehinders the effective
soliton solutions, Eq(6), for B=0.1. The * points represent the zdyection ifB<0 (8>0).
critical line of Eq.(7) (the C-KS) with 5=0. The marginally stable state that occursyat1 enables an

analytical glimpse into the problem. Exploiting the slow lin-
spatially uniform state or, if linearly unstable, causes an amear growth in the marginal vicinity, we expand
plitude blow-up in a finite tim¢4,6]. u=37_,8"un(7,2) in terms of a small parametet;, where

In a rescaled form Eql) reads y=1—v8% >0 and7= 6%7, z=é+ B. Using Eq.(2) the

functions u; are calculated up to two first orders if:
U+ aUUgt BUgeet [(1+2U)Uelet Ygeee=0, (2 uy(7,2)=A(7)€%+c.c, whereA is a complex function yet to
be determined. In the third order of expansiondircalcula-
where f=cu/d,x=L¢/(27),t=L27/(4m*c) with a=al/  tions yield an amplitude equation in the familiar form
(27d),B=2mbl(cL),y=40m?/(cL?). We study Eq(2) on

1000

ox"

a periodic domain &¢=<2m, and for the initial data we d|A o?—8—3ap
assumeu(&,7=0)=(C)rand(), where randf) is a ran- ——=9[A|—k|A®}, k=—F%77—, ®)
domly distributed function in the range-(1,1) andC is a dr 3(4+ %)

small constant, 10*<C=<10 2.

The symmetry of Eq.(2) under {,¢,a,8)—(u,—¢, where|A| is the value of the complex functioh andx is the
—a,— B) enables one to study E¢) for >0 with —x Landau constant. The bifurcation is therefore supercritical
<B<+oo, (subcritica) if k>0(x<0).

Stability. Our main results are displayed in Fig. 1. To WhenB=0, the bifurcation is supercriticak(>0 and the
solve numerically Eq.2) we have used a time-spliting solution is boundedif |«|> /8 and subcritical otherwise.
method. The three sets of data points, represented bihis is in excellent agreement with our numerical studies,
¢ ,0, and O, were obtained fol3=-0.1, 0, and 0.1, re- shown in Fig. 1. Wher8+ 0, the bifurcation is supercritical
spectively. Each has the following property: for any, ) when
pair located under the corresponding critical curve the solu-

tion of Eq. (2) explodes in a finite time, while for those 2_g 38+ 982+ 32
located above, for a small initial data, a bounded solution ,3<a , alternatively Q>L, 4
emerges. This defines the critical functiar+ a((8,y) that 3a 2

separates between two very different evolution paths. Since

this demarcation is done numerically, it is possible that thavherea>0. The linear dispersion depends on its coupling to
curve thus traced is actually a narrow strip with its ownthe advection to change the threshold for a blow-up. Without
character. In this kind of affair a rigorous mathematicaladvectiona=0 (c.f. the solidification mode] irrespective of
analysis is needett.f. Ref.[7]). Numerical calculations re- dispersionk is always negative and the bifurcation is always
veal that the domain of amplitude runaway broadens with theubcritical.

increase of3 and shrinks with its decrease. Observe also that Patterns Within the class of bounded solutions we distin-
the domain of blow-up narrows with the increasejyofind  guish betweerta) temporally irregular solutions and) spa-
terminates aty=1. For y>1 the trivial state is linearly tially ordered wavetrain solutions consisting of equal-
stable. The amplitude saturation results when an enhancednplitude humps. Similarly to the solutions of the KS, when
energy transfer from low-modes into the higher modégia  8=0 the bounded solutions of E@2) are irregular in a
the nonlinear advectiomuu,), leads to an effective short- domain which supports a large number of linearly unstable
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FIG. 2. Traveling-wave solution of Eq(2) for a=50,
B=-0.1, y=0.008 atr=4.

modes(small values ofy). As a measure of irregularity we 145 -
use the “energy” E of the solution u(é,t),
E=[5u?(¢,7)dé.

Numerical studies reveal that in the presence of dispere ;4 |
sion, B#0, the irregular solutions are limited to a strip lo-
cated above the critical curve in the— y plane. The spa-
tially ordered solutions are located above this strip, which is
to say that a highet is needed to get regular patterns for the
same values of8 and y. With an increase ofy (y<1) the
strip of irregular solutions shrinks and eventually disappears.
Given an irregular pattern in order to regularize it, one must, 5, ‘ ‘ ‘ ‘
at fixed and y, either lower the value o or increase the ., *° 32 oo 38 0
value of «, for fixed values ofg and y. Alternatively, the
same can be achieved by increasinghis corresponds to an FIG. 3. (3 The irregular solution of Eq.2) for a=30,
increase in the surface tensjamhile freezing the other two 5 _ g 1 ,=0.008 atr=4. (b) Its energy functiorE as a function
parameters. of time 7.

These properties are illustrated in Figs. 2 and 3 for
y=0.008 and3= —0.1. Figure 2 displays a spatially ordered {he case of solitongor periodic waveswe draw their solu-
traveling-wave solution forx=50. The solution's energy, (ion line @=28y ! on thea— y plane(see Fig. 1 to find
E, approaches in time a constant va(net shown when the  at jt is located well within the blow-up domain. Therefore,
pattern is attained. Figure(@ shows a temporally irregular these particular solitons cannot materialize. In fact, using
solution fora=30, while Fig. 3b) presents its enerdy asa  some of these solitary solutiorffor variety of s and y<1)
function of timez. o __.as an initial condition, results either in a decay into the

The presence of dispersion induces both purely periodigriyial, spatially uniform solution or in a blow-up. The fate of
waves and spatially damped aperiodic waves. In particulagg|itons in the linearly stable>1 domain is still unclear.

1.35 -

we find solitary waves. To this end E€) is rewritten first A more general solution family is obtained if E€B) is
as rewritten as
u,— By g+ (By 1+ 39 d yug+u?+u)=0, (5) N
o o _ U,—hug+| = +3dg | de( yuge+lug+u?+2ru)=0, (5)
which is possible ifa=287y"1. In a moving frame of refer- 2

encel= &+ By~ 17, which absorbs the linear advection, one
has a family of stationary solutions given in terms of elliptic whereh=ra, | = — ya/2, and 8 = ya®—2aB+4. Again,
functions viayu,,+ u?+u=const. The solitary waves are Stationary solutions in a moving frame are available and are

given as given via yu,+lu,+ u2+ 2ru=const. Depending on the
choice of constants the profile connecting upstream with the
u(¢)=—(1+4vys?/2+6ys’cosh ?(s¢), (6) downstream may be monotone or aperiodic damped oscilla-
tions. The freedom to choose enables us for a giveg to
wheres is an arbitrary constant. choose a supercritical valusay, for 3=0 and y=1 take

The demarcation line between the bounded and exploding=3), and thus a stable pattern. The qualitative nature of
solutions also helps to determine the stability of a pattern. Inhese patterns is easily determined via their phase-plane
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analysis but, apart of exceptional cases, an explicit analyticddetween these curves both E{®). and(7) predict bounded,
forms for these waves are unavailable. but very different, patterns. Of course, both cannot describe
Regularization Consider now the same phenomenon; thus, if EB) is viewed as a simpli-
fied model of Eq.(7), its viability to correctly describe the
physics comes to its end near the critical curve of yand
+ YUggee=0. () not on its own critical curve of well-posedness. For param-
& eters below the critical curve of E¢7), solutions of Eq(2),
It is easily seen that Eq2) can be formally derived from Eq. ndependently of whether they explode or not, do not repre-
(7) when its fractional term, according to the dictum of con- S€Nt the physical problem. The generic nature of @gim-
ventional asymptotics, is expanded in smatnd quadratic plies its emergence in different setting then, say the one just

terms are kept. Equatiof?) (the C-KS) was recently shown presented. This in turn will call for a different regularization
ept. =9 ; : y hat may or may not have its own critical curve, which in

[9] to describe the evolution of an unstable interface separa urn will invalidate certain predictions provided by E@)

ing two liquids (oil and watey in a horizontal circular pipe. Yy B

: o . Finally, consider another regularization of H®). Here
In fact the new term describes the destabilizing mechanlsrm,e argue that once an argument in favor of use of a quadratic

due to the low order part of the interfacial curvature in ¢y-packward diffusion has been made, at the same level of ap-
lindrical symmetry. Numerical studies of E(7) [9] reveal  proximation one has to seek other quadratic terms. Motivated
the existence of a critical threshold: for relatively large val-by a number of physical examplésf. Ref.[11]) we replace

ues ofa the solutions for Eq(7) evolving from an arbitrary e |inear dispersion in Eq2) with a quadratic dispersion
initial data are bounded and smooth. However, for relatlvelyﬂ(uz)ggg_ The combined effects of linear and quadratic dis-
small values ofx the denominator in Eq7) vanishes and a persion will be presented elsewhere. Bifurcation analysis car-
singularity of the solution emerges in the form of a CuSprieq for the new equation near the critica 1 point assures
having a finite amplitude. In this context these solutions de'supercritical bifurcation if u>(5a-+ J9a?+128)/16, or

scribe a rupturing interface followed by the formation of ex- < (50— J9a2+128)/16 and boundedness of the solutions
perimentally observeflL0] bubbles. Equatior7) may then m fu(II accord with our) numerics. Thus, for eveaythere is a
be viewed as an effective, physically motivated, regulariza; !

tion of our prototype problem. Note that upon expansion Otbroad range of capable of stabilizing the flow. In particu-

X . lar, without advection, bifurcation is supercritical if
the fraction the regularizing effect spreads over all orderﬁ |>1/\/§ Unlike the previous model where critical curve
and will not be recovered if the expansion of theerall K : P

problemis carried up one more order. In fact, such an eX_deﬁned half-space, here the quadratic dispersion limits the

: . . S : . excluded zone to a strip. Our numerical studies reveal that in
pansion yields a sixth-order partial-differential equation '[hat,[hiS strip the growth OF; the amplitude is softened and its

is ill-posed due to a “wrong” sign of the highest order term. . )
Needless to say, however, a different physical setting ma; rowth competes V\."th the growth_ rate of the g_rad_lents. So
ar, numerical studies have not yielded a convincing argu-

call for a different regularization. ment as to the outcome of this competition. This is left for
The same auxiliary conditions were applied to EQ.as future studies P '

to Eq.(2). Using (*) as data points, we outline in Fig. 1 the

critical surface, which is now of different kind, of E7). A.O. thanks Professor A.J. Bernoff for useful discussions.
Under this curve the solutions form cysp while above it  The work of P.R. was supported in part by a grant from the
they are bounded and appear to be sméoth Ref.[9)). Itis Israel Science Foundation and was carried out in part during
important that the new critical curve is located above thehis stay at the Center for Nonlinear Studies at the Los Ala-
original curve generated by E¢R). Note that in the domain mos National Laboratory, Los Alamos, NM.
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