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Evolution and formation of dispersive-dissipative patterns

Alexander Oron*
Department of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
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A variety of interfacial phenomena, including non-Boussinesq and Marangoni effects are described by a
dispersive-dissipative modelut1auuj1bujjj1@(112u)uj#j1gujjjj50. A critical surfacea5ac(b,g) is
found such that fora,ac(b,g) the amplitude becomes unbounded within a finite time and the model breaks
down. Fora.ac(b,g), if the initial perturbation is not too large, bounded patterns emerge. The interaction
between dispersion and advection dislocates the critical surface~favorably when dispersion and convection
cooperate! and suppresses the temporally irregular nature of the resulting patterns. In the first of the two
regularized variants of the model considered, the amplitude runaway is mitigated and a formation of cusps is
observed. In the second variant with a quadratic dispersion, the emerging solutions are bounded save for a strip
in a parameter space, where both the amplitude and the gradients were found to grow at competing rates.
@S1063-651X~97!51202-5#

PACS number~s!: 47.20.Ky, 47.35.1i
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The amazing success of mathematical models to desc
the physical reality tends to obliterate their approximate
ture, and thus the tentative nature of the information gathe
via the analysis of these models. When nonlinearity is c
cerned, the conventional derivation based on asymptotic
dering may not suffice to render a well-balanced model. U
like a linear theory, where a direct relation between ca
and effect can be estimateda priori, in nonlinear theory a
seemingly minor constituent may cascade the dynamics
a catastrophy. There are many examples in the recent s
tific literature where a seemingly slight generalization o
model renders far worse results to the point of ill-posedne
The generic model presented in this Communication
scribes a formation of patterns due to an interaction betw
advective, dispersive, and dissipative forces. In this mo
the competition between long-wave destabilizing and sh
wave stabilizing forces runs out of balance in a certain
rameter domain, causing an amplitude runaway within a
nite time and a collapse of the model. We delineate
domain~s! of well-posedness of this model as a physic
mathematical entity, and then proceed to present both m
ematical and physical strategies for its regularization to r
der a well-balanced model. In particular, we shall show t
when the model equation describes the evolution of an in
face separating two liquids in a horizontal cylinder, the reg
larization enables us to follow the evolution of the interfa
toward rupture and a formation of drops.

A poor description of the ultraviolet regime by most ma
roscopic models is a direct consequence of the way th
models are derived, namely, under the assumption of b
small amplitudes and small gradients. Though the deriva
is consistent with the intention that these models be u
within these confines, it is the nature of nonlinear proces
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to induce, oblivious of their desirability, all scales. Cons
quently the large amplitude and/or large gradient behavio
these models has little to do with their original counterpa
The ultraviolet falsetto may be a harmless annoyance; h
ever, at other times an artificial catastrophy in amplitude
gradient results. Another aspect of the ultraviolet misma
is the occasional elimination by the conventional expans
of a natural critical threshold~s!, such as the onset of ruptur
of the interface or an overturn of waves, yielding instead
overly calm model equations@such as the Korteweg–d
Vries ~KdV! or the Kuramoto-Sivashinsky~KS! equation#.
Neither the KS nor the KdV contain any information regar
ing a critical onset. In fact, these models always pred
smooth patterns. To unfold such an onset one has to find
restore the relevant mechanism~s! dispensed with in a con
ventional expansion.

Returning to our model equation we write

f t1a f fx1b fxxx1c fxx1d~ f 2!xx1s f xxxx50, ~1!

wherea,b,c,d,s are constants and 0<x<L. The model is a
natural extension, appended with dispersion, of the
model, but also with the destabilizing backward diffusio
being quadratic. This extension has a dramatic impact on
resulting dynamics, because unlike the KS, the quadratic
stability may overcome the short-wavelength stabilizat
causing an amplitude runaway, unless stabilized by ot
mechanisms. As to the physical origins of this model,
note the Benard-Marangoni convection in a shallow la
with the free deformable boundary heated from the air s
@1,2# and the Eckhaus instability of waves@3#. The solidifi-
cation of dilute binary alloys@4# has also been found to b
described by an equation similar to Eq.~1! with a5b50 or
with a50,bÞ0. A model of bioconvection and the effect o
fluid’s compressibility also lead to a similar equation@5#.
Whena5b50 any initial perturbation either evolves into
r-
R1267 © 1997 The American Physical Society
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R1268 55ALEXANDER ORON AND PHILIP ROSENAU
spatially uniform state or, if linearly unstable, causes an a
plitude blow-up in a finite time@4,6#.

In a rescaled form Eq.~1! reads

ut1auuj1bujjj1@~112u!uj#j1gujjjj50, ~2!

where f5cu/d,x5Lj/(2p),t5L2t/(4p2c) with a5aL/
(2pd),b52pb/(cL),g54sp2/(cL2). We study Eq.~2! on
a periodic domain 0<j<2p, and for the initial data we
assumeu(j,t50)5(C)rand(j), where rand(j) is a ran-
domly distributed function in the range (21,1) andC is a
small constant, 1024<C<1022.

The symmetry of Eq.~2! under (u,j,a,b)→(u,2j,
2a,2b) enables one to study Eq.~2! for a.0 with 2`
,b,1`.

Stability. Our main results are displayed in Fig. 1. T
solve numerically Eq.~2! we have used a time-splittin
method. The three sets of data points, represented
L,h, ands, were obtained forb520.1, 0, and 0.1, re-
spectively. Each has the following property: for any (a,g)
pair located under the corresponding critical curve the so
tion of Eq. ~2! explodes in a finite time, while for thos
located above, for a small initial data, a bounded solut
emerges. This defines the critical functiona5ac(b,g) that
separates between two very different evolution paths. S
this demarcation is done numerically, it is possible that
curve thus traced is actually a narrow strip with its ow
character. In this kind of affair a rigorous mathematic
analysis is needed~c.f. Ref. @7#!. Numerical calculations re
veal that the domain of amplitude runaway broadens with
increase ofb and shrinks with its decrease. Observe also t
the domain of blow-up narrows with the increase ofg and
terminates atg51. For g.1 the trivial state is linearly
stable. The amplitude saturation results when an enhan
energy transfer from low-k modes into the higher modes~via
the nonlinear advectionauuj), leads to an effective short

FIG. 1. Data points for the critical surfacea5ac(b,g) for three
values ofb: L2b520.1;h2b50;s2b50.1. All g.1 states
are linearly stable. Whena.ac(b,g), the solutions of Eq.~2!
evolving from small-amplitude initial data are bounded, while
a,ac(b,g) they runaway. The solida52bg21 curve represents
soliton solutions, Eq.~6!, for b50.1. The * points represent th
critical line of Eq.~7! ~theC-KS! with b50.
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wavelength-energy dissipation via thegujjjj part. The in-
crease in the advection coefficienta enhances this proces
and lowers the saturation amplitude. A similar effect w
noted for the Benney equation@8#.

It is important to stress that the emerging patterns in
stable domain emerged out of small initial perturbatio
Nevertheless, certain large initial perturbations were found
run away, which implies that even the stable patterns may
destroyed if strongly perturbed. We do not know yet how
characterize these perturbations apart from clear evide
that their measure is not in the maximum norm.

To understand the dispersive-advective interaction t
u;exp(ikj1ivt) (k andv being the wave number and th
wave frequency, respectively!. Then for the linearized
ut1bujjj50 equation,v5bk3. Thus, the phase velocity i
positive ~negative! for b.0(,0) and the corresponding
wave propagates to the left~right! in j. In the nonlinear
problem this phase shift is coupled to the nonlinear adv
tion, which causes both deformation and a displacemen
the wave. We can formally write this interaction in a mixe
notation as (au2bk2)ux . In a bounded domain its size se
a lower bound onk and thus enhances~hinders! the effective
advection ifb,0 (b.0).

The marginally stable state that occurs atg51 enables an
analytical glimpse into the problem. Exploiting the slow lin
ear growth in the marginal vicinity, we expan
u5(n51

` dnun( t̄,z) in terms of a small parameterd, where
g512ḡd2,ḡ.0 andt̄5d2t, z5j1bt. Using Eq.~2! the
functions ui are calculated up to two first orders ind:
u1( t̄,z)5A( t̄)eiz1c.c, whereA is a complex function yet to
be determined. In the third order of expansion ind calcula-
tions yield an amplitude equation in the familiar form

duAu
dt̄

5ḡuAu2kuAu3, k5
a22823ab

3~41b2!
, ~3!

whereuAu is the value of the complex functionA andk is the
Landau constant. The bifurcation is therefore supercriti
~subcritical! if k.0(k,0).

Whenb50, the bifurcation is supercritical (k.0 and the
solution is bounded! if uau.A8 and subcritical otherwise
This is in excellent agreement with our numerical studi
shown in Fig. 1. WhenbÞ0, the bifurcation is supercritica
when

b ^
a228

3a
, alternatively a&

3b1A9b2132

2
, ~4!

wherea.0. The linear dispersion depends on its coupling
the advection to change the threshold for a blow-up. With
advectiona50 ~c.f. the solidification model!, irrespective of
dispersionk is always negative and the bifurcation is alwa
subcritical.

Patterns. Within the class of bounded solutions we disti
guish between~a! temporally irregular solutions and~b! spa-
tially ordered wavetrain solutions consisting of equ
amplitude humps. Similarly to the solutions of the KS, wh
b50 the bounded solutions of Eq.~2! are irregular in a
domain which supports a large number of linearly unsta
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55 R1269EVOLUTION AND FORMATION OF DISPERSIVE- . . .
modes~small values ofg). As a measure of irregularity we
use the ‘‘energy’’ E of the solution u(j,t),
E5*0

Lu2(j,t)dj.
Numerical studies reveal that in the presence of disp

sion, bÞ0, the irregular solutions are limited to a strip lo
cated above the critical curve in thea2g plane. The spa-
tially ordered solutions are located above this strip, which
to say that a highera is needed to get regular patterns for t
same values ofb andg. With an increase ofg (g,1) the
strip of irregular solutions shrinks and eventually disappe
Given an irregular pattern in order to regularize it, one mu
at fixeda andg, either lower the value ofb or increase the
value ofa, for fixed values ofb and g. Alternatively, the
same can be achieved by increasingg ~this corresponds to an
increase in the surface tension! while freezing the other two
parameters.

These properties are illustrated in Figs. 2 and 3
g50.008 andb520.1. Figure 2 displays a spatially ordere
traveling-wave solution fora550. The solution’s energy
E, approaches in time a constant value~not shown! when the
pattern is attained. Figure 3~a! shows a temporally irregula
solution fora530, while Fig. 3~b! presents its energyE as a
function of timet.

The presence of dispersion induces both purely perio
waves and spatially damped aperiodic waves. In partic
we find solitary waves. To this end Eq.~2! is rewritten first
as

ut2bg21uj1~bg211]j!]j~gujj1u21u!50, ~5!

which is possible ifa52bg21. In a moving frame of refer-
encez5j1bg21t, which absorbs the linear advection, o
has a family of stationary solutions given in terms of ellip
functions viaguzz1u21u5const. The solitary waves ar
given as

u~z!52~114gs2!/216gs2cosh22~sz!, ~6!

wheres is an arbitrary constant.
The demarcation line between the bounded and explod

solutions also helps to determine the stability of a pattern

FIG. 2. Traveling-wave solution of Eq.~2! for a550,
b520.1, g50.008 att54.
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the case of solitons~or periodic waves! we draw their solu-
tion line a52bg21 on thea2g plane~see Fig. 1! to find
that it is located well within the blow-up domain. Therefor
these particular solitons cannot materialize. In fact, us
some of these solitary solutions~for variety of s andg,1)
as an initial condition, results either in a decay into t
trivial, spatially uniform solution or in a blow-up. The fate o
solitons in the linearly stableg.1 domain is still unclear.

A more general solution family is obtained if Eq.~5! is
rewritten as

ut2huj1S a

2
1]jD ]j~gujj1 luj1u212ru !50, ~58!

whereh5ra, l5b2ga/2, and 8r5ga222ab14. Again,
stationary solutions in a moving frame are available and
given via guzz1 luz1u212ru5const. Depending on the
choice of constants the profile connecting upstream with
downstream may be monotone or aperiodic damped osc
tions. The freedom to choosea enables us for a givenb to
choose a supercritical value~say, forb50 andg51 take
a53), and thus a stable pattern. The qualitative nature
these patterns is easily determined via their phase-p

FIG. 3. ~a! The irregular solution of Eq.~2! for a530,
b520.1, g50.008 att54. ~b! Its energy functionE as a function
of time t.
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R1270 55ALEXANDER ORON AND PHILIP ROSENAU
analysis but, apart of exceptional cases, an explicit analy
forms for these waves are unavailable.

Regularization. Consider now

ut1auuj1bujjj1S u

12uD
jj

1gujjjj50. ~7!

It is easily seen that Eq.~2! can be formally derived from Eq
~7! when its fractional term, according to the dictum of co
ventional asymptotics, is expanded in smallu and quadratic
terms are kept. Equation~7! ~theC-KS! was recently shown
@9# to describe the evolution of an unstable interface sepa
ing two liquids ~oil and water! in a horizontal circular pipe.
In fact the new term describes the destabilizing mechan
due to the low order part of the interfacial curvature in c
lindrical symmetry. Numerical studies of Eq.~7! @9# reveal
the existence of a critical threshold: for relatively large v
ues ofa the solutions for Eq.~7! evolving from an arbitrary
initial data are bounded and smooth. However, for relativ
small values ofa the denominator in Eq.~7! vanishes and a
singularity of the solution emerges in the form of a cu
having a finite amplitude. In this context these solutions
scribe a rupturing interface followed by the formation of e
perimentally observed@10# bubbles. Equation~7! may then
be viewed as an effective, physically motivated, regulari
tion of our prototype problem. Note that upon expansion
the fraction the regularizing effect spreads over all ord
and will not be recovered if the expansion of theoverall
problem is carried up one more order. In fact, such an e
pansion yields a sixth-order partial-differential equation t
is ill-posed due to a ‘‘wrong’’ sign of the highest order term
Needless to say, however, a different physical setting m
call for a different regularization.

The same auxiliary conditions were applied to Eq.~7! as
to Eq. ~2!. Using (*) as data points, we outline in Fig. 1 th
critical surface, which is now of different kind, of Eq.~7!.
Under this curve the solutions form cusp~s!, while above it
they are bounded and appear to be smooth~c.f. Ref.@9#!. It is
important that the new critical curve is located above
original curve generated by Eq.~2!. Note that in the domain
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between these curves both Eqs.~2! and~7! predict bounded,
but very different, patterns. Of course, both cannot desc
the same phenomenon; thus, if Eq.~2! is viewed as a simpli-
fied model of Eq.~7!, its viability to correctly describe the
physics comes to its end near the critical curve of Eq.~7! and
not on its own critical curve of well-posedness. For para
eters below the critical curve of Eq.~7!, solutions of Eq.~2!,
independently of whether they explode or not, do not rep
sent the physical problem. The generic nature of Eq.~2! im-
plies its emergence in different setting then, say the one
presented. This in turn will call for a different regularizatio
that may or may not have its own critical curve, which
turn will invalidate certain predictions provided by Eq.~2!.

Finally, consider another regularization of Eq.~2!. Here
we argue that once an argument in favor of use of a quadr
backward diffusion has been made, at the same level of
proximation one has to seek other quadratic terms. Motiva
by a number of physical examples~c.f. Ref.@11#! we replace
the linear dispersion in Eq.~2! with a quadratic dispersion
m(u2)jjj . The combined effects of linear and quadratic d
persion will be presented elsewhere. Bifurcation analysis c
ried for the new equation near the criticalg51 point assures
supercritical bifurcation ifm.(5a1A9a21128)/16, or
m,(5a2A9a21128)/16 and boundedness of the solutio
in full accord with our numerics. Thus, for everya there is a
broad range ofm capable of stabilizing the flow. In particu
lar, without advection, bifurcation is supercritical
umu.1/A2. Unlike the previous model where critical curv
defined half-space, here the quadratic dispersion limits
excluded zone to a strip. Our numerical studies reveal tha
this strip the growth of the amplitude is softened and
growth competes with the growth rate of the gradients.
far, numerical studies have not yielded a convincing ar
ment as to the outcome of this competition. This is left f
future studies.
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